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Abstract

The aim of this paper is to show that the image source method (ISM) can be used both for analytically calculating

Green’s functions of particular simply supported convex polygonal plates and for predicting medium and high frequency

vibrations of arbitrarily shaped simply supported convex polygonal plates with controllable precision. In the first part of

the paper, the method for obtaining the Green’s function of a polygonal plate by ISM is developed. Examples for plates of

different geometries (rectangle, isosceles right triangle, half-equilateral triangle and equilateral triangle) are given. In the

second part of the paper, the pertinence of ISM for predicting medium and high frequency vibrations of arbitrarily shaped

simply supported convex polygonal plates is investigated. An approximation based on the exclusion of image sources

beyond a certain distance from the receiver is used in order to take advantage of the dissipation of vibrational energy

through wave propagation. We investigate the influence of structural damping and truncation distance on the accuracy of

such approximation. The computed responses are in good agreement with reference solutions, which are analytically

known or obtained by the finite element method.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An analysis of literature shows that there is a need of accurate prediction tools in the fields of acoustics and
structural dynamics. In medium and high frequency ranges, finite element methods (FEM) often require
prohibitive calculation capabilities due to the need of a significant number of elements and to the high modal
densities often encountered in structures. Although these methods are continuously extended to higher
frequencies by computer hardware improvement, strong limitations still remain. Statistical energy analysis
(SEA) [1] provides fast estimations of vibrational levels and power flows, for which it certainly remains the
most popular method for such purposes. Determining pertinent subsystems, accurately estimating damping
ratios and coupling loss factors are the main difficulties for the practical implementation of SEA.

As a consequence, several methods have been proposed, some as extensions of FEM and SEA, and some
based on rather different formalisms. Among these, Mace et al. [2] developed an extension of FEM to high
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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frequencies by post-processing finite element models using structure periodicity conditions. Le Bot [3]
developed an extension of SEA in which the distribution of energy density inside each sub-system is predicted.
Cotoni et al. [4] studied a hybrid FEM–SEA method for the prediction of medium frequency vibrations. Chae
et al. [5] constructed a ray tube model with time averaged kinetic and potential energies for predicting
vibrational field distributions for simple and coupled plates. They also gave a comprehensive bibliographic
review of existent high frequency methods. Ladevèze [6] developed the variational theory of complex rays,
which is based on the expansion of vibrations on a superposition of interior modes, edge modes and corner
modes, applicable to medium frequency vibrations. Lastly, references to other improved finite element
approaches can be found in Ref. [7]. The main inconvenient of methods based on a modal or a finite element
description is that the number of modes or elements increases with frequency. On the other hand, formulations
based on SEA provide quadratic results, so that no accurate prediction of phase phenomena such as
interferences is possible.

Otherwise, formulations directly based on wave propagation are adequate for predicting the exact dynamic
field in enclosed spaces without being disadvantaged by the large number of modes or elements at high
frequencies. Among these, mainly two approaches are relevant: the ray-tracing technique and the ISM. These
methods are widely used in room acoustics [8–12] and consist in predicting the dynamic field of an enclosed
domain from the knowledge of the possible propagation paths between the source and an observation point.
Such propagation paths can be described either as rays or as virtual sources. The ray-tracing model is often
known as an approximation in which the directions of propagation are quantised and the receiver is a
spherical volume. On the other hand, ISM consists in replacing the boundaries of the domain by mirror
sources of the original source. The weights and locations of image sources are calculated in order to satisfy the
boundary conditions of the domain. Moreover, ISM is analytical regardless of the specific shape of boundaries
if these form a convex polygon, whereas other analytical methods such as modal analysis [13] or the
superposition method [14] are only applicable to simple geometries. In spite of this, ISM has only been applied
to academic polygonal geometries in structural dynamics [15–17] or used for predicting the vibrations of semi-
infinite plates including an heterogeneity [18,19]. To the best of our knowledge, the most extensive work on
ISM for polygonal plates has been done by Gunda et al. [16], who applied it to rectangular plates with simply
supported and roller boundary conditions and observed a rapid convergence towards FEM and exact
solutions in medium and high frequencies. However, ISM has not been applied or extended to polygonal
plates of other shapes, which is a real need for modelling high frequency vibrations of plates.

The aim of this paper is to test the capability of ISM for predicting medium and high frequency vibrations
of simply supported convex polygonal plates with controllable precision. The method allows as well to
analytically calculate the Green’s functions of plates of particular shape. We restrict our study to simply
supported boundary conditions since the associated reflection coefficient is unitary and independent from the
angle of incidence of waves. The paper is organised as follows. The general method for obtaining Green’s
functions from the ISM description is developed and illustrated by several examples in Section 2. In Section 3,
the practical implementation of ISM is presented: The truncation of the image source generation process,
which is the main difficulty known for this approach, is analysed and discussed.

2. Green’s functions of convex polygonal plates using the ISM

The aim of this section is to develop a general method for obtaining Green’s functions of polygonal plates
from ISM. Statement of the problem and principles of the method are first described.

2.1. Statement of the problem

The studied system is a thin plate with an interior domain O and boundaries qO defining a convex polygon.
The plate is assumed to be excited by an elementary point source at the location r0 (Fig. 1). In the following,
harmonic motion is assumed and e�jot time dependence is implicit.

Flexural vibrations of the plate are considered in the framework of Kirchhoff’s theory. Simply supported
edges are assumed, corresponding to zero displacement and zero bending moment boundary conditions on
qO. The Green’s function GO associated to the flexural vibrations of the plate is then a solution of the set of



ARTICLE IN PRESS

+
r0 ×

r

Ω

∂Ω

Fig. 1. Polygonal plate with inside domain O and boundaries qO. þ, source; �, receiver.
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equations

Dðr4 � k4
f ÞGOðr; r0Þ ¼ dðr� r0Þ in O;

GOðr; r0Þ ¼ 0 on qO;

q2GO

qn2
ðr; r0Þ þ n

q2GO

qt2
ðr; r0Þ ¼ 0 on qO;

8>>><
>>>:

(1)

where Dðr4 � k4
f Þ is the differential operator governing flexural wave propagation, d is the Dirac delta

function, n is the Poisson’s ratio, and n and t are, respectively, the normal and the tangent to the boundary
[13]. The flexural wavenumber kf can be written as

kf ¼ o2 rh

D

� �1=4

, (2)

where r and h are, respectively, the density and thickness of the plate and

D ¼
Eh3

12ð1� n2Þ
(3)

is the flexural rigidity of the plate, E being the Young’s modulus. Structural losses are assumed to be spread in
the medium without any damping mechanism at the boundaries. This can be taken into account by
considering the damping ratio Z as an imaginary part in the Young’s modulus, which is written in the form

E ¼ E0ð1� jZÞ. (4)

Solving the set of Eqs. (1) is the main target of the following.

2.2. Modal expansion of the Green’s function

The solution of Eqs. (1) is classically expressed using a normal modal expansion [13], in the form

GOðx; y; x0; y0Þ ¼
Xþ1
m¼1

fmðx0; y0Þfmðx; yÞ

Dðk4
m � k4

f Þ
, (5)

where fm are real modal shapes, which are normalised to unity and obey the orthogonality relationshipZ
O
fmf

�
m0 dO ¼ dmm0 . (6)
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The modal shapes are determined as the solutions of the homogeneous set of equations

Dðr4 � k4
mÞfmðrÞ ¼ 0 in O;

fmðrÞ ¼ 0 on qO;

q2fm

qn2
ðrÞ þ n

q2fm

qt2
ðrÞ ¼ 0 on qO:

8>>>><
>>>>:

(7)

Furthermore, the wavenumber km is linked to the eigenvalue om associated to mode m by the relationship

om ¼

ffiffiffiffiffiffi
D0

rh

s
k2
m, (8)

where D0 is the real part of D.

2.3. Image source method (ISM)

ISM consists in replacing the finite plate O, excited by a point source at r0, by an infinite plate containing the
original source plus image sources whose locations and amplitude weights are calculated in order to satisfy the
boundary conditions [8,9,12,16]. The locations of image sources are obtained by performing successive
‘‘mirror’’ reflections of the initial source on the edges qO of the plate. Simply supported boundary conditions
are considered here, which are a very particular case since the associated reflection coefficient is R ¼ �1, i.e.
unitary and independent from the angle of incidence of waves [13]. This implies that the function describing
the locations of image sources is a sum of Dirac delta functions, with weights þ1 or �1, according to the
parity of reflections. As a convention, such function is here called the image source cloud of the studied system,
noted DOðr; r0Þ as it is a function of space r and initial source location r0 and is associated to the shape of
the boundaries qO. An example of the image source cloud of an arbitrarily convex polygonal plate is shown in
Fig. 2. The step by step construction of the image sources cloud is given in more detail in Appendix A.

Subsequently, the vibrational field at the receiver is obtained as the superposition of elementary
contributions from all the sources. Eqs. (1) can then be written in the condensed form

Dðr4 � k4
f ÞGOðr; r0Þ ¼ DOðr; r0Þ. (9)
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Fig. 2. Image source cloud for an arbitrarily convex polygonal plate (first 12 reflections, giving rise to 483 image sources). —–, plate

boundaries; þ, sources.
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The boundary conditions are satisfied by the existence of an infinity of image sources, represented by the
functionDOðr; r0Þ. In order to infer an analytical expression of GOðr; r0Þ, we use the Green’s function G1 of the
associated infinite plate [16]. For a point source located at 0, G1 is the solution of the equation

Dðr4 � k4
f ÞG1ðr; 0Þ ¼ dðrÞ (10)

and can be written as

G1ðr; 0Þ ¼
j

8k2
f D
ðH
ð1Þ
0 ðkf jrjÞ �H

ð1Þ
0 ðjkf jrjÞÞ, (11)

where H
ð1Þ
0 is the cylindrical Hankel’s function of the first kind of order 0 and jrj is the source-to-receiver

distance [20]. From Eqs. (9) and (10), the Green’s function of the convex polygonal plate can be written as

GOðr; r0Þ ¼ DOðr; r0Þ � G1ðr; 0Þ. (12)

In this convolution product, acting on variable r, the infinite space Green’s function is initially centred on 0,
and DO acts as a translation, weighting and summation operator of the contributions of all sources.

Eq. (12) is the general ISM solution of Eqs. (1) for any simply supported convex polygonal plate. In the
following, ISM is applied to plates of particular polygonal shapes that allow to express the Green’s function
analytically. The practical implementation of ISM and its application to convex polygonal plates of arbitrary
shape are discussed in Section 3.
2.4. Obtaining a modal expansion of the Green’s function from ISM

Some special geometries of plates give rise to a spatially periodic image source cloud. The resulting Green’s
function GO is then spatially periodic itself. Thus, by using Fourier series, GO can be expressed as a function of
discrete wavenumbers, which can be interpreted as a modal expansion of the Green’s function. The identity
between these two kinds of expressions of a function is usually known as the Poisson summation formula
(see for example Ref. [20]).

The first step for obtaining such expression for the Green’s function of the plate is to describe the spatially
periodic image source cloud by using two functions, PO and E, respectively, a periodisation operator and an
elementary cell. PO acts as a summation of E with translations. The image source cloud can then be written as
the convolution product

DOðr; r0Þ ¼ POðrÞ � Eðr; r0Þ (13)

and the periodisation operator can be written in cartesian coordinates as

POðx; yÞ ¼
Xþ1

p¼�1

Xþ1
q¼�1

dðx� plx; y� qlyÞ (14)

with lx and ly being the spatial periods of the image source cloud. Eq. (12) can then be written as

GOðx; y; x0; y0Þ ¼
Xþ1

p¼�1

Xþ1
q¼�1

dðx� plx; y� qlyÞ � Eðx; y; x0; y0Þ � G1ðx; y; 0; 0Þ. (15)

Since GO is periodic, it can be expressed using a Fourier series, in the form

GOðx; y; x0; y0Þ ¼
Xþ1

m¼�1

Xþ1
n¼�1

Cmn e
�jðkmxþknyÞ, (16)

where km ¼ m2p=lx and kn ¼ n2p=ly describe the spatial periodicity of GO and where

Cmn ¼
1

lxly

Z lx

0

Z ly

0

GOðx; y; x0; y0Þ e
jðkmxþknyÞ dxdy. (17)
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Eqs. (16) and (17) yield

GOðx; y; x0; y0Þ ¼
1

lxly

Xþ1
m¼�1

Xþ1
n¼�1

F½Eðx; y; x0; y0Þ�ðkm;knÞ
F½G1ðx; y; 0; 0Þ�ðkm ;knÞ

e�jðkmxþknyÞ, (18)

where F denotes the Fourier transform, and is defined as

F½f ðrÞ�ðkÞ ¼

Z
R2

f ðrÞ ejk�r dr, (19)

Eq. (18) is consequently an expansion of the Green’s function of the plate GO on harmonic functions, i.e. a
modal expansion. The equality between Eqs. (15) and (18) shows the equivalence between modal and image
source expansions.

2.5. Examples

To the best of our knowledge, ISM has only been used for the analytical calculation of Green’s functions in
the case of beams [15] and one-dimensional acoustic cavities [20], where the image source cloud is a one-
dimensional comb. The case of simply supported rectangular plates has been discussed by Gunda et al. [16],
who compared ISM computations with a finite number of image sources to the exact solution. Furthermore,
the image source cloud of isosceles right triangular, half-equilateral and equilateral triangles have already been
qualitatively studied by Cremer and Müller [10]. They have pointed out that the well-organised source pattern
results in a number of possible directions of ray propagation in the domain, but no derivation of the Green’s
functions of such plates has been developed.

One point in common between these plate geometries is that the image source cloud is spatially periodic. In
the following examples, ISM is applied to simply supported polygonal plates of various shapes that lead to a
periodic image source cloud. The geometries under consideration are the rectangle, the isosceles right triangle,
the half-equilateral triangle and the equilateral triangle. For each case, the elementary cell E and the
periodisation operator PO are given, leading to analytical expression of the Green’s function GO, derived from
Eq. (18).

2.5.1. Simply supported rectangular plate

Fig. 3 shows the image source cloud of a rectangular plate of dimensions Lx and Ly, simply supported at its
four edges and excited by a point source at ðx0; y0Þ.

The elementary cell can be taken as the subset of four sources located at ð�x0;�y0Þ. Since the reflexion
coefficient is R ¼ �1, the latter is a quadrupole and can be written as

Eðx; y; x0; y0Þ ¼ dðx� x0; y� y0Þ � dðx� x0; yþ y0Þ � dðxþ x0; y� y0Þ þ dðxþ x0; yþ y0Þ. (20)
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Fig. 3. Image source cloud for a rectangular plate. —–, plate boundaries; þ, sources; - - - -, elementary cell E.
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The spatial periods of the cloud are lx ¼ 2Lx and ly ¼ 2Ly, so that the periodisation operator, given by
Eq. (14), can be written as

POðx; yÞ ¼
Xþ1

p¼�1

Xþ1
q¼�1

dðx� p2Lx; y� q2LyÞ (21)

and the discrete wavenumbers are km ¼ mp=Lx and kn ¼ np=Ly. The Green’s function of the rectangular plate
obtained by the ISM is then known from Eq. (13). The Fourier transform of G1ðx; y; 0; 0Þ can be written as

F½G1ðx; y; 0; 0Þ�ðkm ;knÞ
¼

1

Dððk2
m þ k2

nÞ
2
� k4

f Þ
. (22)

Furthermore, it can be seen from Eq. (20) that

F½Eðx; y;x0; y0Þ�ðkm ;knÞ
¼ �4 sinðkmx0Þ sinðkny0Þ. (23)

Inserting Eqs. (22) and (23) into Eq. (18) and rearranging sums on m and n leads to the modal expansion of the
Green’s function for the rectangular plate,

GOðx; y; x0; y0Þ ¼
4

LxLy

X1
m¼1

X1
n¼1

sinðkmx0Þ sinðkny0Þ sinðkmxÞ sinðknyÞ

Dððk2
m þ k2

nÞ
2
� k4

f Þ
. (24)

Furthermore, the eigenfrequencies of Eq. (8) are given by the zeros of the denominator in Eq. (24)

omn ¼
D

rh

� �1=2
mp
Lx

� �2

þ
np
Ly

� �2
 !

(25)

for ðmX1; nX1Þ. Eq. (24) is the well-known solution for the rectangular plate [13,14]. This simple example
shows that ISM allows to obtain the Green’s function for this academic geometry by using a rather different
approach.

2.5.2. Simply supported isosceles right triangular plate

The image source cloud of the isosceles right triangular plate of side L with a point source at ðx0; y0Þ is
represented in Fig. 4. The elementary cell can be separated into two quadrupoles of sources, respectively,
located at ð�x0;�y0Þ and ð�ðL� y0Þ;�ðL� x0ÞÞ. The response of this plate can thus be regarded as the
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Fig. 4. Image source cloud for the isosceles right triangular plate. —–, plate boundaries; þ, sources; - - - -, elementary cell E.
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superposition of responses of a square plate to opposite excitations at ðx0; y0Þ and ðL� y0;L� x0Þ, which was
used by Szilard [21] for calculating the static deflection of this plate.

The elementary cell E and its Fourier transform can be respectively written as

Eðx; y;x0; y0Þ ¼

dðx� x0; y� y0Þ

�dðx� x0; yþ y0Þ

�dðxþ x0; y� y0Þ

þdðxþ x0; yþ y0Þ

8>>>><
>>>>:

þ

�dðx� ðL� y0Þ; y� ðL� x0ÞÞ;

þdðx� ðL� y0Þ; yþ ðL� x0ÞÞ;

þdðxþ ðL� y0Þ; y� ðL� x0ÞÞ;

�dðxþ ðL� y0Þ; yþ ðL� x0ÞÞ

8>>>><
>>>>:

(26)

and

F½Eðx; y;x0; y0Þ�ðkm;knÞ
¼ �4 sinðkmx0Þ sinðkny0Þ þ 4 sinðkmðL� y0ÞÞ sinðknðL� x0ÞÞ. (27)

The spatial periods of the cloud are lx ¼ 2L and ly ¼ 2L, leading to the discrete wavenumbers km ¼ mp=L

and kn ¼ np=L and to the periodisation operator

POðx; yÞ ¼
Xþ1

p¼�1

Xþ1
q¼�1

dðx� p2L; y� q2LÞ. (28)

The Green’s function G1 of the infinite plate is the same as the one used in Section 2.5.1. By, inserting
Eqs. (22) and (27) into Eq. (18), the Green’s function for the simply supported isosceles right triangular plate
can be expressed as

GOðx; y;x0; y0Þ ¼
4

L2

Xþ1
m¼1

Xþ1
n¼1

sinðkmx0Þ sinðkny0Þ � sinðkmðL� y0ÞÞ sinðknðL� x0ÞÞ

Dððk2
m þ k2

nÞ
2
� k4

f Þ
sinðkmxÞ sinðknyÞ. (29)

The zeros of the denominator in Eq. (29) are

omn ¼
D

rh

� �1=2
mp
L

� �2
þ

np
L

� �2� �
(30)
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for ðmX1; nX1Þ, which are the same as those in Eq. (25) for Lx ¼ Ly ¼ L. However, the numerator in Eq. (29)
consists in a sum of two terms and therefore is cancelled for m ¼ n, so that omm are not singularities of GO

(i.e. eigenfrequencies).
2.5.3. Simply supported half-equilateral triangular plate

The image source cloud of the simply supported half-equilateral triangular plate of vertices ð0; 0Þ, ðL; 0Þ and
ð0;L=

ffiffiffi
3
p
Þ with a point source at ðx0; y0Þ is represented in Fig. 5.

The elementary cell E of the image source cloud can be written as the superposition of six quadrupoles of
sources:

Eðx; y;x0; y0Þ ¼
X6
i¼1

xi

dðx� xi; y� yiÞ;

�dðx� xi; yþ yiÞ;

�dðxþ xi; y� yiÞ;

þdðxþ xi; yþ yiÞ;

8>>>><
>>>>:

(31)

where xi ¼ �1 is a sequence giving the relative weight of these quadrupoles and ð�xi;�yiÞ (i ¼ 1; . . . ; 6) are the
locations of the sources of each quadrupole (see Appendix B.1 for the detailed expressions of ðxi; yiÞ and xi).
Fourier Transform of E gives

F½Eðx; y; x0; y0Þ�ðkm ;knÞ
¼ �4

X6
i¼1

xi sinðkmxiÞ sinðknyiÞ. (32)

Furthermore, the image source cloud is 2L-periodic along x and 2
ffiffiffi
3
p

L-periodic along y, leading to km ¼

mp=L and kn ¼ np=
ffiffiffi
3
p

L and

POðx; yÞ ¼
Xþ1

p¼�1

Xþ1
q¼�1

dðx� p2L; y� q2
ffiffiffi
3
p

LÞ. (33)

Application of Eq. (18) consequently leads to the Green’s function for the simply supported half-equilateral
plate

GOðx; y; x0; y0Þ ¼
4ffiffiffi
3
p

L2

Xþ1
m¼1

Xþ1
n¼1

P6
i¼1 � xi sinðkmxiÞ sinðknyiÞ

Dððk2
m þ k2

nÞ
2
� k4

f Þ
sinðkmxÞ sinðknyÞ. (34)

The zeros of the denominator in Eq. (34) are

omn ¼
D

rh

� �1=2
mp
L

� �2
þ

npffiffiffi
3
p

L

� �2
 !

(35)

for ðmX1; nX1Þ, and are the same as those in Eq. (25) for Lx ¼ L and Ly ¼
ffiffiffi
3
p

L. As for the case of the
isosceles right triangular plate, the circular frequencies omn for which the numerator in Eq. (34) is cancelled are
not eigenfrequencies.
2.5.4. Simply supported equilateral triangular plate

The image source cloud of the simply supported equilateral triangular plate of vertices ð0; 0Þ, ðL; 0Þ and
ðL=2;

ffiffiffi
3
p

L=2Þ is represented in Fig. 6. The elementary cell of the cloud can be written as

Eðx; y;x0; y0Þ ¼
X12
i¼1

xidðx� xi; y� yiÞ, (36)

where ðxi; yiÞ (i ¼ 1; . . . ; 12) are the locations of the 12 sources that form the elementary cell and xi ¼ �1 is a
sequence giving the weight of each one of these sources (see Appendix B.2 for the detailed expressions of
ðxi; yiÞ and xi).
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The spatial periods of the cloud are lx ¼ 3L and ly ¼
ffiffiffi
3
p

L, leading to km ¼ m2p=3L and kn ¼ n2p=
ffiffiffi
3
p

L

and

POðx; yÞ ¼
Xþ1

p¼�1

Xþ1
q¼�1

dðx� p3L; y� q
ffiffiffi
3
p

LÞ. (37)

According to Eq. (18), the Green’s function of the plate is then

GOðx; y;x0; y0Þ ¼
1

3L �
ffiffiffi
3
p

L

Xþ1
m¼�1

Xþ1
n¼�1

P12
i¼1xi e

jkmxi ejknyi

Dððk2
m þ k2

nÞ
2
� k4

f Þ
e�jkmx e�jkny, (38)

which can be written in the form

GOðx; y;x0; y0Þ ¼
4

33=2L2

Xþ1
m¼1

Xþ1
n¼1

P12
i¼1xi cosðkmðxi � xÞÞ cosðknðyi � yÞÞ

Dððk2
m þ k2

nÞ
2
� k4

f Þ

þ
2

33=2L2

Xþ1
m¼1

P12
i¼1xi cosðkmðxi � xÞÞ

Dðk4
m � k4

f Þ

þ
2

33=2L2

Xþ1
n¼1

P12
i¼1xi cosðknðyi � yÞÞ

Dðk4
n � k4

f Þ
. (39)

The zeros of the denominator in Eq. (38) are given by

omn ¼
D

rh

� �1=2
m2p
3L

� �2

þ
n2pffiffiffi
3
p

L

� �2
 !

(40)

for ðmX0; nX0Þ except ðm ¼ 0; n ¼ 0Þ. Here again, the circular frequencies for which the numerator in
Eq. (38) is cancelled are not eigenfrequencies.

From this section, we can draw the following conclusions. The Green’s function of a polygonal plate can be
computed by ISM. In the case of a periodic image source cloud DO, an analytical expansion of the Green’s
function of the plate GO can be obtained by means of a Poisson summation formula. It should be noticed that
this analytical expansion can be obtained for all polygonal shapes which lead to periodic image source cloud.
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3. Effect of truncation of the image source cloud

The aim of this section is to quantify the accuracy of the plate response calculated from a truncated image
source cloud. On one hand, the main drawback for practical implementation of ISM is the need of an infinite
number of image sources. On the other hand, a wave propagating in a real-world medium is subjected to
geometrical attenuation and structural damping. As a consequence, image sources located far from the
receiver do not significantly contribute to the vibrational field. An approximated formulation may then be
considered by eliminating all image sources located outside an arbitrary radius from the receiver, as usually
defined in room acoustics as the speed of sound times the reverberation time [8]. The flexural vibrations of
polygonal plates can then be accurately described with a finite number of image sources and the precision of
the estimation can be controlled. We henceforth refer to this formulation as the approximate image source
method (AISM).
3.1. Truncation of the image source cloud

In order to investigate the influence of frequency, damping and source-to-receiver distance on wave
propagation, the Green’s function of an infinite plate, given in Eq. (11), can be asymptotically approximated
following [20]

G1ðr; rsÞ ’ G̃1ðr; rsÞ ¼ �
1

8jk2
f D

2

pkf jr� rsj

� �1=2

ejðkf jr�rsj�p=4Þ (41)

for Reðkf Þjr� rsjb1, where rs and r are, respectively, the locations of a source and a receiver in an infinite
plate. In this formulation, evanescent waves are ignored. The modulus of G̃1 decreases with increasing
circular frequency o, source-to-receiver distance jr� rsj, and structural damping ratio Z, according to

jG̃1ðr; rsÞj�o�5=4jr� rsj
�1=2ð1þ Z2Þ�3=16. (42)

The truncation radius is defined as the distance rt ¼ jr� rsj over which the amplitude of a flexural wave
becomes P times lower than for a propagation distance of reference rc (Fig. 7).
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This criterion can be expressed as

jG1ð0; rtÞj ¼
jG1ð0; rcÞj

P
. (43)

The choice of the distance rc is arbitrary and may be taken as a characteristic length of the plate. We use the
mean free path [1], which is the average distance between two successive image sources, defined as

rc ¼
pS

p
, (44)

where S and p are, respectively, the total area and the perimeter of the plate. The distance rt obtained from
Eq. (43) is used for stopping the image source generation process. In order to control the truncation radius
regardless of the geometry of the plate, we use the dimensionless parameter

g ¼
rt

rc

. (45)

Using the asymptotic expression (41) for jG1ð0; rtÞj and for jG1ð0; rcÞj in Eq. (43) allows to write

P ’
ffiffiffi
g
p

. (46)

Thus, Eqs. (43) and (45) are equivalent definitions of the truncation radius from arbitrary values of g or P,
such that g ¼ þ1 and P ¼ þ1 correspond to the ISM solution.

3.2. Influence of structural damping on the accuracy of AISM

Since the vibrational energy of plates is dissipated during wave propagation, for a given truncation radius rt,
the accuracy of AISM increases with structural damping. We use the concept of modal overlap factor (MOF)
as an indicator of the effects of damping on the behaviour of the physical system. The MOF is commonly used
in room acoustics and structural dynamics for determining the threshold between low and high frequency
ranges [22]. It estimates the number of modes that overlap at a given frequency as the ratio between the �3 dB
bandwidth Dom of a resonance and the frequency interval dom between two successive resonances, as

MOF ¼
Dom

dom
. (47)

For vibrating systems, the MOF generally increases with damping and frequency. The value for determining
the threshold between low and high frequency ranges results from a semi-empirical observation of the
behaviour of the system under consideration [22]. The value MOF ¼ 1 corresponds to a frequency for which
the spacing between eigenfrequencies is equal to the �3 dB bandwidth of resonances. This is consequently the
frequency for which modes begin to overlap, here taken as the threshold between low and mid frequency
ranges. Moreover, the value MOF ¼ 3 is chosen as the threshold between mid and high frequency ranges, such
that an average of three successive resonances is in a resonance bandwidth. In room acoustics, the frequency
for which MOF ¼ 3 is referred to as the Schroeder frequency [23].

In order to study the accuracy of AISM in low, mid and high frequency ranges, simulations are performed
on a simply supported isosceles right triangular 2mm-thick steel plate, with Young’s modulus E0 ¼ 210GPa,
Poisson’s ratio n ¼ 0:3, density r ¼ 7850 kgm�3 and for two different structural damping ratios, Z ¼ 0:03 and
0.05. The vertices are located at ð0; 0Þ, ðL; 0Þ and ð0;LÞ, where L ¼ 1m. The source and the receiver are,
respectively, located at r0 ¼ ð0:2L; 0:1LÞ and r ¼ ð0:6L; 0:3LÞ. Fig. 8 shows the corresponding image source
cloud, truncated for g ¼ 10:76.

The MOF is usually calculated from the average spacing between resonances over the whole frequency
range [1]. Nevertheless, for thin plates, eigenfrequencies are not equally spaced, and then the MOF does not
follow a monotonic law of frequency. In particular, symmetries in the geometry induce multiple modes, also
called degenerate modes, which lead to an infinite MOF at the corresponding eigenfrequency. Therefore, in
order to estimate the low-mid and mid-high frequency thresholds, a smoothed curve is used by considering the
local minimum of the MOF over a sliding window of 10 modes and then by fitting it to a first-order
polynomial in a least-squares sense. This underestimates the value of the MOF and consequently
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Fig. 8. Image source cloud of the isosceles right triangular plate, for the truncation parameter g ¼ 10:76 (rt ¼ 4:95m), containing 154
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overestimates the values of the low-medium and medium-high frequency thresholds. Fig. 9 shows the MOF
and its smoothed estimation as a function of frequency for Z ¼ 0:03 and 0.05, with the threshold frequencies
corresponding to MOF ¼ 1 and 3.

In order to evaluate the differences between AISM and the exact solution, the error at a particular
frequency is estimated as

error ¼
G
ðAISMÞ
O � G

ðrefÞ
O

G
ðrefÞ
O

�����
�����, (48)

where G
ðrefÞ
O is the exact solution of Eq. (29), calculated by modal expansion. Fig. 10 shows the modulus and

the phase of AISM and exact solutions, and the associated error as a function of frequency. The estimated
MOF thresholds delimit the three frequency ranges of the response, for which three different degrees of
accuracy are obtained. The comparison between Figs. 10(a,c,e) and (b,d,f) shows that the accuracy of AISM is
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improved for medium and high frequency ranges as structural damping is increased. In particular, good
agreement between AISM and the exact solution is reached in the modulus and in the phase where the
response curve presents smooth variations. On the other hand, the accurate reconstruction of resonances and
anti-resonances is especially difficult since it needs the interferences between a large number of image sources.

The accuracy of modal methods is known to behave oppositely with respect to damping. From a frequency
point of view, damping widens resonances, which compels the consideration of a greater number of terms
when implementing modal methods. From a spatial point of view, increasing damping reduces the
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Fig. 11. Triangular plate used for AISM and FEM simulations with the truncation parameter g ¼ 22:44. —–, plate boundaries;

þ, sources; �, receiver; —–, truncature.
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contribution from sources located far from the receiver, and thus improves the accuracy of AISM.
Furthermore, as the effect of damping is stronger at high frequencies than at low frequencies, the accuracy of
AISM is improved with frequency.
3.3. Application of AISM to an arbitrary polygonal plate

In this section, a plate without any symmetry or particular geometrical property is studied. Simulations
from AISM and FEM are compared. The plate we use has the same material properties as those in Section 3.2,
with a structural damping ratio Z ¼ 0:07. The vertices of the plate are located at ð0; 0Þ, ð0:75; 0Þ and
ð0:5625; 0:9Þ (in meters). FEM tests are performed using I-DEAS 12 NX s, with linear interpolated
quadrilateral elements. The average element length of the mesh is 3mm, 18.6 times smaller than the
wavelength of the highest eigenfrequency taken into account, i.e. 6332:9Hz (mode number 320). The model
has 40 078 elements and 40 534 nodes. For the AISM simulation, the characteristic length is rc ¼ 0:39m. The
truncation parameter is taken as g ¼ 22:44, which gives a truncation radius of rt ¼ 8:71m, yielding 793
sources. Fig. 11 shows the plate with the locations of the sources and the receiver. For the damping ratio
Z ¼ 0:07, the MOF ¼ 1 and 3 frequency thresholds are, respectively, obtained at 248.2 and 682.6Hz.

Fig. 12 shows the modulus and the phase of GO estimated from AISM and FEM, and the associated error
(Eq. (48), where G

ðrefÞ
O is taken as the FEM estimation). The results exhibit a similar behaviour to those

presented in Fig. 10. Large fluctuations in the modulus and on the phase lead to a considerable increase in the
error, which is mainly due to the inability of the method to predict a strong resonant behaviour with a finite
number of image sources. However, the accuracy of AISM is improved with frequency as the effects of
structural damping are dominant over resonances of the system.

Furthermore, for estimating the vibrational behaviour of a plate, FEM needs the computation of the field
on all the nodes of the model, while in AISM it is exclusively obtained at the observation point, allowing faster
computations. As an example, for obtaining the responses shown in Fig. 12, AISM was approximately
40 times faster than FEM. The difference in terms of computation time is also linked to the simplicity of the
AISM calculations, which consist in geometrical transformations for generating the image source cloud and
then on a sum of the contributions of the sources for constructing the vibrational field at the receiver.
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3.4. Influence of the truncation radius on the accuracy of AISM

The aim of this subsection is to study the convergence of AISM when increasing the truncation radius. For
the purpose of predicting the mean value of the response of complex vibrating systems, Skudrzyk [24] pointed
out that, for a plate with a driver or a receiver near an edge, the contribution of the nearest image source is
usually strong enough to mask the reverberant field, and that including the effect of more image sources only
sharpens the minima of the response curve. Fig. 13 shows the comparison between AISM estimation and exact
Green’s function GO for the isosceles right triangular plate (Fig. 8) with Z ¼ 0:03, for two truncation radii,
given by g ¼ 6:15 (52 sources) and g ¼ 30:74 (1255 sources).
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The value g ¼ 6:15 leads to an estimation of a mean line of the response, and g ¼ 30:74 leads to a low error
in medium and high frequency ranges. Thus, the accuracy can be controlled by broadening the cloud of image
sources. Fig. 14 shows the error on the estimation of jGOj averaged over the high frequency band (ending at
3 kHz) as a function of g, from which the limit g!1 leading to the exact solution is confirmed.

4. Conclusion

The image source method (ISM) is a deterministic method that allows to calculate Green’s functions for the
flexural vibrations of simply supported convex polygonal plates. Based on this, we have exposed the general
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method for obtaining such Green’s functions. Particular plate geometries leading to a spatially periodic image
source cloud yield a spatially periodic Green’s function, which can be expressed as a modal expansion by
means of a Poisson summation formula. In this way, we have obtained new Green’s functions for plates of
particular geometries, i.e. rectangle, isosceles right triangle, half-equilateral triangle and equilateral triangle.
Subsequently, we have developed a tool for predicting the flexural vibrations of arbitrarily shaped convex
polygonal plates, called the approximate image source method (AISM), which consists in truncating the image
source cloud. The results show a convergence towards the exact or the FEM solutions as the truncation radius
is increased, since more image sources are taken into account. In classical modal methods, the number of
modes to take into account needs to be increased for high frequencies and for a high damping ratio. On the
contrary, since AISM is based on wave propagation, its accuracy is improved in high frequencies, where
structural damping is predominant. In counterpart, AISM needs a large number of image sources for the
analysis of highly reverberant fields since rapid amplitude and phase variations over frequency are present.
However, with few sources in the truncation radius, AISM proves to be able to predict the mean line of the
response. Finally, only simply supported boundaries have been considered, for which the reflection coefficient
is unitary and omnidirectional. ISM can then be applied to plates with roller boundary conditions, but other
kinds of boundaries need further investigation. Coupled structures, such as plate assemblies or stiffened plates
[25] can also be investigated by adapting principles of ISM presented in this paper.

Appendix A. Construction of the image source cloud

For a given edge Ep delimited by vertices Vp and V pþ1, the location of the image source Sm;p relatively to the
location of its so-called mother source Sm is determined by vector SmSm;p, which can be written as

SmSm;p ¼ 2ðSmVp þ VpHpÞ, (A.1)

where Hp is the intersection point of vectors SmSm;p and VpVpþ1, as shown in Fig. 15 for the construction of
source S1 from source S0 and edge E1. Using absolute coordinates, the location of image source Sm;p is
described by vector rm;p, yielding

rm;p ¼ �rm þ 2vp þ 2
ðrm � vpÞ � ðvpþ1 � vpÞ

jvpþ1 � vpj
2

ðvpþ1 � vpÞ, (A.2)

where rm is the location of the mother source and vp and vpþ1 are the locations of the vertices defining Ep.
The amplitude weights of the sources depend on the reflection coefficient of the boundaries and on the number

n of reflections that lead to the source. Thus, for a plate with reflection coefficient R, its amplitude weight is

A ¼ ðRÞn. (A.3)

The reflection coefficient of simply supported edges is R ¼ �1, yielding

A ¼ ð�1Þn. (A.4)

For example, in Fig. 15, the amplitude weights of sources S0, S1 and S1;3 are, respectively, A0 ¼ 1, A1 ¼ �1
and A1;3 ¼ 1.
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Furthermore, a given source contributes to the field at the receiver if it is visible from the receiver, i.e. if the
receiver is in the ‘‘light’’ zone of the source. Additionally, a given source creates a new image source if the
inside (i.e. the reflecting side) of the corresponding edge is in its light zone. The same can be interpreted in
terms of rays. Each image source contribution describes a vibrational ray in the plate. Thus, the existence of an
image source relies on whether the corresponding ray path between the source and the receiver is possible or
not. However, some precautions are to be taken into account since an image source that is invisible from the
receiver can give rise to a visible image source. Fig. 15 shows an example of construction of the first image
sources of a plate, in which some image sources do not contribute to the vibrational field at the receiver. S1;2

does not exist because edge E2 is out of the light zone of S1. Moreover, S1 does not contribute to the
vibrational field at R, but its image source at E3, S1;3, does.

Appendix B. Elementary cells of equilateral and half-equilateral triangular plates

B.1. Half-equilateral triangular plate

Fig. 16 shows the elementary cell of the half equilateral triangular plate.
The coordinates of the principal source of each of the six quadrupoles that form this elementary cell

(presented in Section 2.5.3) are
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where L is the length of the triangle base. The sequence giving the relative weights of the quadrupoles that
form the elementary cell is, in the same order,

xi ¼ f1;�1; 1; 1;�1; 1g. (B.2)

B.2. Equilateral triangular plate

Fig. 17 shows the elementary cell of the equilateral triangular plate.
The coordinates of the sources of the elementary cell (Section 2.5.4) of this plate are
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where L is the length of the triangle side. The sequence giving the relative weights of the sources in the
elementary cell is, in the same order,

xi ¼ f1;�1;�1; 1; 1;�1;�1; 1; 1;�1;�1; 1g. (B.4)
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